วันจันทร์ที่ 9 พฤศจิกายน พ.ศ. 2552

ระบบ extranet


                Extranet คือระบบเครือข่ายซึ่งเชื่อมเครือข่ายภายในองค์กร หรือ อินทราเน็ต (Intranet) เข้ากับระบบคอมพิวเตอร์ที่อยู่ภายนอกองค์กร เช่น ระบบคอมพิวเตอร์ของสาขาของผู้จัดจำหน่าย หรือของลูกค้า เป็นต้น โดยการเชื่อมต่อเครือข่ายอาจเป็นได้ทั้งการเชื่อมต่อโดยตรงระหว่าง 2 จุด หรือการเชื่อมต่อแบบเครือข่ายเสมือน (Virtual Network) ระหว่างระบบอินทราเน็ตหลาย ๆ เครือข่ายผ่านอินเทอร์เน็ต



เครือข่ายภายนอกองค์กร หรือ เอกซ์ทราเน็ต (Extranet) คือระบบเครือข่ายซึ่งเชื่อมเครือข่ายภายในองค์กร หรือ อินทราเน็ต (Intranet) เข้ากับระบบคอมพิวเตอร์ที่อยู่ภายนอกองค์กร เช่น ระบบคอมพิวเตอร์ของสาขาของผู้จัดจำหน่าย หรือของลูกค้า เป็นต้น โดยการเชื่อมต่อเครือข่ายอาจเป็นได้ทั้งการเชื่อมต่อโดยตรงระหว่าง 2 จุด หรือการเชื่อมต่อแบบเครือข่ายเสมือน (Virtual Network) ระหว่างระบบอินทราเน็ตหลาย ๆ เครือข่ายผ่านอินเทอร์เน็ตก็ได้ระบบเครือข่ายแบบเอกซ์ทราเน็ต โดยปกติแล้วจะอนุญาตให้ใช้งานเฉพาะสมาชิกขององค์กร หรือผู้ที่ได้รับสิทธิในการใช้งานเท่านั้น โดยผู้ใช้จากภายนอกที่เชื่อมต่อเข้ามาผ่านเครือข่ายเอกซ์ทราเน็ต อาจถูกแบ่งเป็นประเภท ๆ เช่น ผู้ดูแลระบบ สมาชิก คู่ค้า หรือผู้สนใจทั่วๆ ไป เป็นต้น ซึ่งผู้ใช้แต่ละกลุ่มจะได้รับสิทธิในการเข้าใช้งานเครือข่ายที่แตกต่างกันไป


ระบบ intranet

              อินทราเน็ต (Intranet) คือเครือข่ายคอมพิวเตอร์ที่เชื่อมโยงการสื่อสารด้วยระบบโปรโตคอลทีซีพี/ไอพี(TCP/IP) ซึ่งเป็นระบบโปรโตคอลในการสื่อสารของเครือข่ายอินเทอร์เน็ต (Internet) ดังนั้น โปรแกรมเพื่อการสื่อสารบนเครือข่ายอินทราเน็ตจึงเป็นซอฟต์แวร์ชนิดเดียวกันกับที่ใช้ในการสื่อสารบนเครือข่ายอินเทอร์เน็ต ส่วนความแตกต่างที่ชัดเจนระหว่างเครือข่ายอินทราเน็ตกับเครือข่ายอินเทอร์เน็ต คือ อินเทอร์เน็ตเป็นเครือข่ายคอมพิวเตอร์ที่ครอบคลุมทั้งโลก อินเทอร์เน็ตไม่มีใครเป็นเจ้าของอย่างแท้จริง และไม่มีใครสามารถควบคุมเครือข่ายอินเทอร์เน็ตได้ แต่สำหรับเครือข่ายอินทราเน็ตมีเจ้าของแน่นอน และถูกควบคุมโดยองค์กรหรือบุคคลผู้เป็นเจ้าของ



อินทราเน็ตเกิดจากความคิดของระบบอินเทอร์เน็ตในการเชื่อมโยงคอมพิวเตอร์หลากหลายชนิดจากทุกมุมโลกเข้าด้วยกันได้ รวมทั้งการที่ผู้ใช้สามารถเข้าถึงข้อมูลจากที่ต่าง ๆ การมีบริการที่เป็นประโยชน์และความสามารถในการแสดงผลได้ตามต้องการแบบ 4ท (ที่เดียวทั่วโลก ทันที ทุกเวลา) นี้เอง ทำให้เกิดแนวคิดในการนำเทคโนโลยีของระบบดังกล่าวมาใช้งานในหน่วยงานหรือองค์กรซึ่งเมื่อย่อระบบอินเตอร์เน็ตลงมาในองค์กรก็เป็นระบบอินทราเน็ตนั่นเอง ดังนั้นอินทราเน็ตต้องมีทั้งฮาร์ดแวร์และซอฟต์แวร์


เครือข่าย Internet


                อินเทอร์เน็ต (อังกฤษ: Internet) หมายถึง เครือข่ายคอมพิวเตอร์ขนาดใหญ่ ที่มีการเชื่อมต่อระหว่างเครือข่ายหลายๆ เครือข่ายทั่วโลก โดยใช้ภาษาที่ใช้สื่อสารกันระหว่างคอมพิวเตอร์ที่เรียกว่า โพรโทคอล (Protocol) ผู้ใช้เครือข่ายนี้สามารถสื่อสารถึงกันได้ในหลายๆ ทาง อาทิเช่น อีเมล เว็บบอร์ด และสามารถสืบค้นข้อมูลและข่าวสารต่างๆ รวมทั้งคัดลอกแฟ้มข้อมูลและโปรแกรมมาใช้ได้





 ที่มา


อินเทอร์เน็ตเกิดขึ้นในปี ค.ศ. 1969 (พ.ศ. 2512) จากการเกิดเครือข่าย ARPANET (Advanced Research Projects Agency NETwork) ซึ่งเป็นเครือข่ายสำนักงานโครงการวิจัยชั้นสูงของกระทรวงกลาโหม ประเทศสหรัฐอเมริกา โดยมีวัตถุประสงค์หลักของการสร้างเครือข่ายคือ เพื่อให้คอมพิวเตอร์สามารถเชื่อมต่อ และมีปฏิสัมพันธ์กันได้ เครือข่าย ARPANET ถือเป็นเครือข่ายเริ่มแรก ซึ่งต่อมาได้ถูกพัฒนาให้เป็นเครือข่าย อินเทอร์เน็ตในปัจจุบัน


อินเทอร์เน็ตในประเทศไทย


อินเทอร์เน็ตในประเทศไทยเริ่มขึ้นเมื่อปี พ.ศ. 2530 โดยการเชื่อมต่อมินิคอมพิวเตอร์ของมหาวิทยาลัยสงขลานครินทร์ และสถาบันเทคโนโลยีแห่งเอเชีย (AIT) ไปยังมหาวิทยาลัยเมลเบิร์น ประเทศออสเตรเลีย แต่ในครั้งนั้นยังเป็นการ เชื่อมต่อโดยผ่านสายโทรศัพท์ ซึ่งสามารถส่งข้อมูลได้ช้าและไม่เป็นการถาวร จนกระทั่งในปี พ.ศ. 2535 ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ (NECTEC) ได้ทำการเชื่อมต่อคอมพิวเตอร์กับมหาวิทยาลัย 6 แห่ง ได้แก่ จุฬาลงกรณ์มหาวิทยาลัย, สถาบันเทคโนโลยีแห่งเอเชีย (AIT) มหาวิทยาลัยสงขลานครินทร์, ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ(NECTEC), มหาวิทยาลัยธรรมศาสตร์ และมหาวิทยาลัยเกษตรศาสตร์ เข้าด้วยกันเรียกว่า "เครือข่ายไทยสาร"






                 การให้บริการอินเทอร์เน็ตในประเทศไทยได้เริ่มต้นขึ้นเป็นครั้งแรกเมื่อ เดือน มีนาคม พ.ศ. 2538 โดยความร่วมมือของรัฐวิสาหกิจ 3 แห่ง คือ การสื่อสารแห่งประเทศไทย องค์การโทรศัพท์แห่งประเทศไทย และสำนักงานส่งเสริมวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) โดยให้บริการในนาม บริษัท อินเทอร์เน็ต ประเทศไทย (Internet Thailand) เป็นผู้ให้บริการอินเทอร์เน็ตเชิงพาณิชย์รายแรกของประเทศไทย [1]

เครือข่าย Client-server


             เป็นรูปแบบหนึ่งของเครือข่ายแบบ server-based โดยจะมีคอมพิวเตอร์หลักเครื่องหนึ่งเป็น เซิร์ฟเวอร์ ซึ่งจะไม่ได้ทำหน้าที่ประมวลผลทั้งหมดให้เครื่องลูกข่าย หรือไคลเอนต์ (client) เซิร์ฟเวอร์ทำหน้าที่เสมือนเป็นที่เก็บข้อมูลระยะไกล (remote disk) และประมวลผลบางอย่างให้กับไคลเอนต์เท่านั้น เช่น ประมวลผลคำสั่งในการดึงข้อมูลจากเซิร์ฟเวอร์ฐานข้อมูล (database server) เป็นต้น



ประสิทธิภาพ


เครือข่ายแบบ Client/Server นั้น เซิร์ฟเวอร์จะต้องทำงานบริการให้กับเครื่องไคลเอนต์ที่ร้องขอเข้ามา ซึ่งนับว่าเป็นงานประมวลผลที่หนักพอสมควร ดังนั้นเครื่องเซิร์ฟเวอร์ก็ควรจะเป็นเครื่องคอมพิวเตอร์ที่ทรงพลัง เพียงพอในการรองรับงานหนัก ๆ แบบนี้ในเครือข่าย


บริการ


อาจจะมีเซิร์ฟเวอร์อยู่หลายตัวในการทำงานเฉพาะด้าน เช่น ไฟล์เซอร์เวอร์ทำหน้าที่ในการจัดเก็บ และบริหารไฟล์ทั้งหมดที่อยู่ในเครือข่าย พรินต์เซิร์ฟเวอร์ ทำหน้าที่เกี่ยวกับการควบคุมการพิมพ์ทั้งหมดในเครือข่าย ดาต้าเบสเซอร์เวอร์จัดเก็บและบริหารฐานข้อมูลขององค์กร เป็นต้น


โปรแกรม


องค์กรที่ใช้เครือข่ายแบบนี้ มักมีการเก็บโปรแกรมไว้บนเซิร์ฟเวอร์ เพื่อให้ผู้ใช้สามารถเข้าไปเรียกใช้ได้ทันที เช่น เซิร์ฟเวอร์เก็บโปรแกรมเวิร์ดโปรเซสเซอร์ไว้ เมื่อผู้ใช้ต้องการใช้โปรแกรมนี้ก็สามารถรันโปรแกรมนี้จากเซิร์ฟเวอร์ได้


ขนาด


เครือข่ายแบบ Client/Server สามารถรองรับเครือข่ายตั้งแต่ขนาดเล็กไปจนถึงขนาดใหญ่ แต่ที่เหมาะสมจะเป็นเครือข่ายขนาดใหญ่


การบริหารระบบ


จะต้องมีเจ้าหน้าที่ในการบริหารระบบโดยเฉพาะ ซึ่งทำหน้าที่จัดการเกี่ยวกับงานพื้นฐานประจำวัน เช่น การสำรองข้อมูล การตรวจสอบระบบรักษาความปลอดภัย และการดูแลระบบให้ทำงานได้อย่างสม่ำเสมอ


ระบบรักษาความปลอดภัย


เครื่องเซิร์ฟเวอร์ส่วนใหญ่จะเปิดให้ทำงานตลอดเวลา และต้องมีการป้องกันไม่ให้ใครเข้ามาปรับเปลี่ยนระบบภายในเครื่องเซิร์ฟเวอร์ เพื่อเป็นการป้องกันรักษาข้อมูล บริษัทส่วนใหญ่จึงมักจะเก็บเซิร์ฟเวอร์ไว้ในห้องที่แยกต่างหากและมีการปิดล็อคไว้เป็นอย่างดี


การขยายระบบ


เครือข่ายแบบ Client/Server ยืดหยุ่นต่อการเพิ่มเติมขยายระบบ การเพิ่มเครื่องไคลเอนต์ในเครือข่ายไม่จำเป็นต้องใช้เครื่องสเป็กสูง ราคาแพง โดยเครื่องที่มีสมรรถนะสูงนั้นเอาไว้ใช้เป็นเครื่องเซิร์ฟเวอร์



การดูแลซ่อมแซม


ปัญหาที่เกิดขึ้นในเครือข่ายแบบนี้หาพบได้ไม่ยาก เช่น ถ้าเครื่องไคลเอนต์หลาย ๆ เครื่องทำงานไม่ได้ ปัญหาก็มักจะมาจากที่เครื่องเซิร์ฟเวอร์ และถ้าเครื่องไคลเอนต์เครื่องใดมีปัญหาผู้บริหารระบบก็เพียงแก้ไขที่เครื่องนี้ ซึ่งจะไม่กระทบต่อเครื่องไคล

เครือข่ายpeer-peer



             เครือข่ายแบบนี้จะเก็บไฟล์และการเชื่อมต่อกับอุปกรณ์ต่างๆ ไว้ที่เครื่องคอมพิวเตอร์ของผู้ใช้แต่ละคน โดยไม่มีคอมพิวเตอร์ส่วนกลางที่ทำหน้าที่นี้ เรียกได้ว่าต่างคนต่างเก็บ ต่างคนต่างใช้ แต่ผู้ใช้ในเครือข่ายสามารถเรียกใช้ไฟล์จากคอมพิวเตอร์เครื่องอื่นได้ ถ้าคอมพิวเตอร์เครื่องนั้นทำการแชร์ไฟล์เหล่านั้นไว้ เครือข่ายแบบ Peer-to-Peer นี้เหมาะสำหรับองค์กรขนาดเล็กที่มีคอมพิวเตอร์เชื่อมต่อกันไม่เกิน 10 เครื่อง เนื่องจากติดตั้งง่าย ราคาไม่แพง และการดูแลไม่ยุ่งยากนัก แต่ถ้าคอมพิวเตอร์ในเครือข่ายมีมากกว่า 10 เครื่องขึ้นไปควรจะใช้เครือข่ายแบบอื่นดีกว่า







ทรัพยากร


ทรัพยากรของเครือข่าย เช่น เครื่องพิมพ์ หรือแฟกซ์โมเด็ม ปกติจะเชื่อมต่อกับคอมพิวเตอร์เครื่องใดเครื่องหนึ่งในเครือข่าย สำหรับเครื่องที่ไม่มีทรัพยากรเหล่านี้ก็สามารถเข้าใช้ทรัพยากรเหล่านี้ผ่านเครือข่ายได้






โปรแกรมใช้งาน


โดยปกติโปรแกรมใช้งานทั่วไป เช่น เวิร์ดโปรเซสเซอร์ หรือสเปรดชีต ที่ใช้ในเครือข่ายแบบ Peer-to-Peer จะติดตั้งในคอมพิวเตอร์ของผู้ใช้แต่ละเครื่องเลย






สมรรถนะ


เมื่อคอมพิวเตอร์ในเครือข่ายถูกร้องขอข้อมูล หรือเรียกใช้ทรัพยากร สมรรถนะในการทำงานของคอมพิวเตอร์ก็จะลดต่ำลง เช่น ถ้ามีเครื่องพิมพ์เชื่อมต่อกับคอมพิวเตอร์เครื่องใดเครื่องนั้นก็จะทำงานช้าลงทันทีที่มีผู้ใช้คนอื่นในเครือข่ายส่งเอกสารมาพิมพ์ที่เครื่องพิมพ์ตัวนี้






การติดตั้ง


เมื่อติดตั้งและเซตอัปฮาร์ดแวร์ของเครือข่ายเสร็จแล้ว ต่อไปก็ต้องติดตั้งระบบปฏิบัติการเครือข่าย และโปรแกรมใช้งานลงเครื่องคอมพิวเตอร์ทุกเครื่องด้วย หลังจากนั้นก็ต้องเซตอัปการเชื่อมต่อคอมพิวเตอร์ แต่ละเครื่องให้มองเห็นเครือข่ายและทรัพยากรในเครือข่าย






การบริหารระบบ


การบริหารเครือข่ายแบบ Peer-to-Peer นี้ไม่ซับซ้อนมากนัก ดังนั้นจึงไม่จำเป็นจะต้องมีการตั้งตำแหน่งผู้บริหารเครือข่ายโดยเฉพาะ เพียงแต่ให้ผู้ใช้ในเครือข่ายศึกษาวิธีการบริหารระบบในเครื่องของตนเองก็เพียงพอแล้ว เรียกได้ว่าต่างคนต่างช่วยกันดูแล






ระบบรักษาความปลอดภัย


ลักษณะการเก็บไฟล์ในเครือข่ายแบบ Peer-to-Peer นี้จะใช้หลักการต่างคนต่างเก็บในเครื่องคอมพิวเตอร์ของตนเอง จุดนี้เองทำให้ผู้ใช้คนอื่นสามารถเข้าไปดูไฟล์ข้อมูลในเครื่องต่าง ๆ ในเครือข่ายได้ไม่ยากนัก ระบบรักษาความปลอดภัยของข้อมูลในเครือข่ายแบบนี้จึงค่อนข้างหละหลวมกว่าระบบรักษาความปลอดภัยที่เก็บไว้ที่เซิร์ฟเวอร์






ค่าใช้จ่าย


ในกรณีที่เครื่องที่เชื่อมต่อมีน้อยเครื่องค่าใช้จ่ายจะถูกกว่าเครือข่ายรูปแบบอื่น ๆ






คุณสมบัติขั้นสูง


เครือข่ายแบบนี้จะเน้นในเรื่องของการแลกเปลี่ยนข้อมูล และการใช้ทรัพยากรร่วมกันในเครือข่ายเท่านั้น คุณสมบัติขั้นสูงอื่น ๆ เช่น การควบคุมระยะไกล หรือระบบรับส่งอีเมล์ จะไม่มีให้ใช้ในเครือข่ายนี้






การขยายระบบ


เครือข่ายแบบ Peer-to-Peer เหมาะสำหรับการเชื่อมต่อคอมพิวเตอร์จำนวนน้อยๆ ซึ่งไม่เหมาะในการขยายระบบเพิ่มเติม ถ้าองค์กรต้องการขยายระบบเพิ่มเติมควรจะสร้างเป็นเครือข่ายแบบอื่น

ระบบเครือข่ายแมน


MAN



MAN (metropolitan area network) เป็นเครือข่ายที่ติดต่อภายในของผู้ใช้ด้วยทรัพยากรคอมพิวเตอร์ ในด้านพื้นที่ทางภูมิศาสตร์ หรือภูมิภาคขนาดใหญ่กว่าเครือข่ายแบบ LAN แต่เล็กกว่าเครือข่ายแบบ WAN คำนี้ใช้กับการติดต่อภายในเครือข่ายในเมืองเป็นเครือข่ายเดี่ยวขนาดใหญ่ และใช้กับวิธีการติดต่อของเครือข่าย LAN หลายเครือข่ายโครงการเชื่อมด้วยสาย backbone เดียวกัน การใช้บางครั้งอ้างถึงเครือข่ายมหาวิทยาลัย






ตัวอย่างของเครือข่าย MAN มีหลายขนาด สามารถพบในเมืองหลวงของ LONDON ในอังกฤษ Lodz ในโปแลนด์ และ Geneva ในสวิสเซอร์แลนด์ มหาวิทยาลัยขนาดใหญ่ บางครั้งใช้คำนี้ เรียกเครือของตัวเอง

ระบบเครือข่ายแวน

WAN




เครือข่าย WAN เป็นเครือข่ายเชื่อมโยงกันในระยะทางที่ห่างไกล อาจจะเป็นหลาย ๆ กิโลเมตร

ดังนั้นความเร็วในการเชื่อมโยงระหว่างกันอาจไม่สูงมากนัก เพราะระยะทางไกลทำให้มีสัญญาณรบกวนได้สูง ความเร็วจึงอยู่ในระดับช่วง 9.6-64 Kbps และ 1.5-2 Mbps ขึ้นอยู่กับแอพพลิเคชั่นและขนาดของข้อมูล

ทั้งเครือข่ายแบบ LAN และ WAN ล้วนแล้วแต่ใช้หลักการของแพ็กเก็ตสวิตชิ่ง กล่าวคือ มีการกำหนดวิธีการรับส่งข้อมูลเป็นแพ็กเก็ต โดยให้แต่ละอุปกรณ์มีแอดเดรสประจำ วิธีการรับส่งมีได้หลากหลาย เราเรียกวิธีการว่า "โปรโตคอล (Protocol)" ดังนั้นจึงมีมาตรฐานการเชื่อมโยงระยะไกลมีการกำหนด

แอดเดรส เช่นในเครือข่าย X.25 ข้อมูลจากที่หนึ่งส่งเป็นแพ็กเก็ตส่งต่อไปยังปลายทางได้

ข้อมูลเป็นแพ็กเก็ตจากจุดเริ่มต้น มีแอดเดรสกำกับตำแหน่งปลายทางและตำแหน่งต้นทางแอดเดรส

เหล่านี้เป็นรหัสที่รับรู้ได้ อุปกรณ์สวิตช์จะเลือกทางส่งไปให้ หากมีปัญหาใดทำให้ปลายทางรับได้ไม่ถูกต้อง

เช่นมีสัญญาณรบกวน ระบบจะมีการเรียกร้องให้ส่งให้ใหม่เพื่อว่าการรับส่งข้อมูลจะต้องถูกต้องเสมอ ระบบการโต้ตอบเหล่านี้จึงเป็นมาตรฐานที่กำหนดของเครือข่ายนั้

เครือข่ายแลน



LAN




ลักษณะการเชื่อมต่อเครือข่ายคอมพิวเตอร์ถึงกันทั้งหมด จึงมีการแบ่งแยกเครือข่ายเป็นการเชื่อมโยงเครือข่ายภายในพื้นที่ใกล้ ๆ กัน เรียกว่า LAN (Local Area Network) และการเชื่อมโยงระยะไกล ที่เรียกว่า WAN (Wide Area Network)

เครือข่าย LAN เป็นเครือข่ายที่เชื่อมโยงกันในพื้นที่ใกล้เคียงกัน เช่นอยู่ในอาคารเดียวกัน สามารถ

ดูแลได้เอง การเชื่อมโยงเครือข่าย LAN ที่นิยมใช้กันมี 2 รูปแบบดังนี้

เครือข่าย LAN แบบอีเทอร์เน็ต มีการรับส่งข้อมูลด้วยความเร็ว 10-100 Mbps. มีพื้นฐานรูปแบบการเชื่อมโยงร่วมกันแบบบัส คือ ทุกอุปกรณ์จะเชื่อมต่อกันบนสายสัญญาณเส้นเดียว ดังนั้นการรับส่งต้องมีการจัดการไม่ให้รับส่งพร้อมกันเกินกว่าหนึ่งคู่ ขบวนการรับส่งข้อมูลจึงถูกกำหนดขึ้น โดยให้อุปกรณ์ที่จะส่งข้อมูลตรวจสอบว่ามีข้อมูลใดวิ่งอยู่บนสายหรือไม่ หากไม่มีจึงส่งได้ และถ้ามีการชนกันของข้อมูลบนสายก็จะส่งใหม่ การหลีกเลี่ยงการชนกันจึงกระทำได้ในเครือข่ายระยะใกล้

เครือข่าย LAN แบบโทเก็นริง มีความเร็ว 16 Mbps. เชื่อมต่อกันเป็นวงแหวนโดยแพ็กเก็ตข้อมูลจะวิ่งวนในทิศทางใดทางหนึ่ง ถ้ามีแอดเดรสปลายทางเป็นของใคร อุปกรณ์นั้นจะรับข้อมูลไป การจัดการรับส่งข้อมูลในวงแหวนจึงเป็นไปอย่างมีระเบียบ

เครือข่าย LAN ที่อยู่ในมาตรฐานเดียวกันสามารถเชื่อมโยงเข้าหากัน แต่ทุกตัวจะมีแอดเดรสประจำ และแอดเดรสเหล่านี้จะซ้ำกันไม่ได้ โดยปกติผู้ผลิตอุปกรณ์เชื่อมโยงเครือข่ายได้กำหนดแอดเดรสเหล่านี้มาให้แล้ว

เพื่อจะให้เชื่อมโยงเครือข่ายต่างมาตรฐานกันได้นั้น มีวิธีการพัฒนาให้ระบบสามารถนำแพ็กเก็ต เฉพาะของเครือข่ายมาใส่ในแพ็กเก็ตกลางที่เชื่อมโยงระหว่างกันได้ เช่น TCP/IP ตัวอย่าง เช่น ถ้าต้องการเชื่อมเครือข่าย LAN หลาย ๆ เครือข่ายเข้าด้วยกันให้เป็นเครือข่ายเดียวกัน

เครือข่ายอีเทอร์เน็ตมีแพ็กเก็ตเฉพาะเมื่อจะส่งออก ก็นำแพ็กเก็ตเฉพาะมาเปลี่ยนถ่ายลงในแพ็กเก็ต TCP/IP แล้วส่งต่อ.. แพ็กเก็ต TCP/IP จึงเป็นแพ็กเก็ตกลางที่พร้อมรับแพ็กเก็ตย่อยอื่นได้ ดังนั้นการเชื่อมต่อระหว่างเครือข่าย เช่น อีเทอร์เน็ตในปัจจุบันจึงเกิดขึ้นได้

ระบบเครือข่ายแพน

ระบบเครือข่ายแพน


PAN

Personal Area Network ระบบเครือข่ายนี้เป็น “ เครือข่ายเฉพาะบุคคล ” มีหลักการ ทำงานคือ ผู้ใช้เพียงพกอุปกรณ์รบส่งสัญญาณพิเศษขนาดเล็กไว้กับตัวก็สามารถแลกเปลี่ยนข้อมูลกันได้เลย ซึ่งอุปกรณ์ดังกล่าวจะส่งกระแสไฟฟ้าขนาดอ่านมาก ๆ เพื่อกระต้นให้เกิด Electric Fields (สนามไฟฟ้า) สำหรับความเร็วในการส่งข้อมูลนั้นอาจจะเร็วได้ถึง 2400 Bps ซึ่งระบบเครือข่าย PAN นี้เป็นต้นกำเนิด ให้เกิดการนำเอาไปประยุกต์ใช้มากมาย เช่น โทรศัพท์มือถือ Pocket PC เป็นต้น ซึ่งอุปกรณ์พวกนี้ จะใช้วิธีการสื่อสารที่เรียกว่า WPAN ( Wireless Personal Area Network) ซึ่งถือเป็นแขนงหนึ่งของ PAN โดยหลักการทำงานแทนที่จะใช้ สนามไฟฟ้าที่เกิดขึ้นในร่างกายเราเป็นสื่อ ในการรับส่งข้อมูล ก็เปลี่ยนไปใช้คลื่นวิทยุที่มีระยะทำการสั้นแทน บางครั้งเราอาจจะรู้จัก WPAN ในชื่อของ Bluetooth (Bluetooth เป็นตัวอย่างเทคโนโลยีที่ใช้ WPAN) ซึ่ง WPAN มีระยะทำการ 1-10 M และมีความเร็วไม่เกิน 1 Mbps

วันจันทร์ที่ 26 ตุลาคม พ.ศ. 2552

วัตถุประสงค์ของระบบเครือข่าย



วัตถุประสงค์ของระบบเครือข่ายคอมพิวเตอร์


                  ระบบเครือข่ายคอมพิวเตอร์ เป็นการเชื่อมต่อคอมพิวเตอร์หลายเครื่องเข้าด้วยกัน โดยมีคอมพิวเตอร์ขนาดใหญ่เป็นศูนย์กลาง และมีวัตถุประสงค์เพื่อประโยชน์ในการใช้โปรแกรมซอฟแวร์และข้อมูลร่วมกัน ซึ่งอยู่ บนคอมพิวเตอร์ศูนย์กลาง และเพื่อปรับปรุงข้อมูลบนคอมพิวเตอร์ศูนย์กลาง ผ่านคอมพิวเตอร์ใดๆในเครือข่ายคอมพิวเตอร์


ประยชน์ของระบบเครือข่าย

1. เพื่อปรับปรุงข้อมูลโดยผู้ใช้คอมพิวเตอร์ผ่านคอมพิวเตอร์ใดๆบนเครื่อข่ายคอมพิวเตอร์ซึ่งอยู่ต่างสถานที่กัน เช่น การจองที่นั่งบน เครื่องบิน โดย ผ่านทางคอมพิวเตอร์

2. เพื่อใช้ในการติดต่อสื่อสารและแลกเปลี่ยนข้อมูลข่าวสารระหว่างผู้ใช้คอมพิวเตอร์ รวมไปถึงการแบ่งการใช้ไฟล์ข้อมูล โปรแกรมและ เครื่องพิมพ์ซึ่งเป็นอุปกรณ์ที่ติดตั้งไว้บนคอมพิวเตอร์เครื่องใดเครื่องหนึ่งใน เครือข่ายคอมพิวเตอร์

ความหมายของเครือข่าย

เครือข่ายคอมพิวเตอร์


การที่ระบบเครือข่ายมีบทบาทและความสำคัญเพิ่มขึ้น เพราะไมโครคอมพิวเตอร์ได้รับการใช้งานอย่างแพร่หลาย จึงเกิดความต้องการที่จะเชื่อมต่อคอมพิวเตอร์เหล่านั้นถึงกับเพื่อเพิ่มขีดความสามารถของระบบให้สูงขึ้น เพิ่มการใช้งานด้านต่าง ๆ และลดต้นทุนระบบโดยรวมลง มีการแบ่งใช้งานอุปกรณ์และข้อมูลต่าง ๆ ตลอดจนสามารถทำงานร่วมกันได้
              สิ่งสำคัญที่ทำให้ระบบข้อมูลมีขีดความสามารถเพิ่มขึ้น คือ การโอนย้ายข้อมูลระหว่างกัน และการเชื่อมต่อหรือการสื่อสาร การโอนย้ายข้อมูลหมายถึงการนำข้อมูลมาแบ่งกันใช้งาน หรือการนำข้อมูลไปใช้ประมวลผลในลักษณะแบ่งกันใช้ทรัพยากร เช่น แบ่งกันใช้ซีพียู แบ่งกันใช้ฮาร์ดดิสก์ แบ่งกันใช้โปรแกรม และแบ่งกันใช้อุปกรณ์อื่น ๆ ที่มีราคาแพงหรือไม่สามารถจัดหาให้ทุกคนได้ การเชื่อมต่อคอมพิวเตอร์เป็นเครือข่ายจึงเป็นการเพิ่มประสิทธิภาพการใช้งานให้กว้างขวางและมากขึ้นจากเดิม
           การเชื่อมต่อในความหมายของระบบเครือข่ายท้องถิ่น ไม่ได้จำกัดอยู่ที่การเชื่อมต่อระหว่างเครื่องไมโครคอมพิวเตอร์ แต่ยังรวมไปถึงการเชื่อมต่ออุปกรณ์รอบข้าง เทคโนโลยีที่ก้าวหน้าทำให้การทำงานเฉพาะมีขอบเขตกว้างขวางยิ่งขึ้น มีการใช้เครื่องบริการแฟ้มข้อมูลเป็นที่เก็บรวบควมแฟ้มข้อมูลต่างๆ มีการทำฐานข้อมูลกลาง มีหน่วยจัดการระบบสือสารหน่วยบริการใช้เครื่องพิมพ์ หน่วยบริการการใช้ซีดี หน่วยบริการปลายทาง และอุปกรณ์ประกอบสำหรับต่อเข้าในระบบเครือข่ายเพื่อจะทำงานเฉพาะเจาะจงอย่างใดอย่างหนึ่ง ในรูป เป็นตัวอย่างเครือข่ายคอมพิวเตอร์ที่จัดกลุ่มเชื่อมโยงเป็นระบบ




ตัวอย่างเครือข่ายคอมพิวเตอร์ที่จัดกลุ่มอุปกรณ์รอบข้างเชื่อมโยงเป็นระบบ


                เครือข่ายคอมพิวเตอร์ก่อให้เกิดความสามารถในการปฎิบัติการร่วมกัน ซึ่งหมายถึงการให้อุปกรณ์ทุกชิ้นที่ต่ออยู่บนเครือข่ายทำงานร่วมกันได้ทั้งหมดในลักษณะที่ประสานรวมกัน โดยผู้ใช้เห็นเสมือนใช้งานในอุปกรณ์เดียวกัน จึงเป็นวิธีการในการนำเอาอุปกรณ์ต่างชนิดจำนวนมาก มารวมกันเป็นเสมือนระบบเดียวกัน ทั้ง ๆ ที่อุปกรณ์เหล่านั้นอาจจะมาจากต่างยี่ห้อ ต่างบริษัท ก็ได้

รหัสแทนข้อมูล

รหัสแทนข้อมูลในคอมพิวเตอร์


รหัสแทนข้อมูลในคอมพิวเตอร์ คอมพิวเตอร์ทำงานด้วยหลักการทางอิเล็กทรอนิกส์ที่แทนสัญญาณทางไฟฟ้าด้วยตัวเลขศูนย์และหนึ่งซี่งเป็นตัวเลขในระบบเลขฐานสอง แต่ละหลักเรียกว่าบิตและเมื่อนำตัวเลขหลายๆ บิตมาเรียงกัน จะใช้สร้างหัสแทนความหมายจำนวน หรือตัวอักษร หรือ สัญลักษณ์ ทั้งภาษาอังกฤษและภาษาไทยได้ และเพื่อให้การสื่อสารแลกเปลี่ยนข้อความระหว่างมนุษย์กับคอมพิวเตอร์เป็นไนในแนวเดียวกัน จึงมีการกำหนดมาตรฐานรหัสตัวเลขในระบบเลขฐานสองสำหรับแทนสัญลักษณ์เหล่านี้ รหัสมาตรฐานที่นิยมใช้กันมากมีสองกลุ่มคือ

รหัสแอสกี

รหัสแอสกีเป็นมาตรฐานที่นิยมใช้กันมากในระบบคอมพิวเตอร์ส่วยใหญ่เป็นคำย่อมาจากAmerican Standard Code for Information Interchangeเป็นรหัส 8บิต แทนสัญลักษณ์ต่าง ๆ ได้256 ตัว เมื่อใช้แทนตัวอักษรภาษาอังกฤษแล้วยังมีเหลืออยู่ สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม หรือสมอได้กำหนดรหัสภาษาไทยเพิ่มลงลงไปเพื่อให้ใช้งานรวมกันได้

รหัสเอ็บซีดิก

รหัสเอ็บซีดิก(EBCDIC) เป็นคำย่อมาจากExtended Binary Coded Decimal Interchange Code พัฒนาและใช้งานโดยบริษัทไอบีเอ็ม เครื่องคอมพิวเตอร์ เมนเฟรมของไอบีเอ็มยังคงใช้รหัสนี้



การแทนข้อมูลในหน่วยความจำ

หน่วยความจำหลักของคอมพิวเตอร์เป็นที่เก็บข้อมูลและคำสั่งในขณะประมวลผลการเก็บข้อมูลในหน่วยความจำเป็นการเก็บรหัสตัวเลข ฐานสอง ข้อมูลมที่ใช้ในการประมวลผลทั้งตัวเลขหรือตัวอักษรจะได้รัการแทนเป็นตัวเลขฐานสอง แล้วเก็บไว้ในหน่วยความจำ เช่น ข้อความว่าBANGKOK เก็บในคอนพิวเตอร์จะแทนเป็นรหัสเรียงกันไปดังนี้

หน่วยความจำของไมโครคอมพิวเตอร์ที่ใช้กันอยู่ในขณะนี้ มีขนาดความกว้าง 8 บิตและเก็บข้อมูลเรียงกันไป โดยมีการกำหนดตำแหน่งซึ่งเรียกว่า เลขที่อยู่ (address) เพื่อให้ข้อมูลที่เก็บมีความถูกต้อง การเขียนหรืออ่านทุกครั้งจึงต้องตรวจสอบความถูกต้องของข้อมูล วิธีที่ง่ายและนิยมใช้กันคือการเพิ่มอีก 1 บิต เพื่อทำให้เลขหนึ่งเป็นจำนวนคู่ เรียกว่าพาริตีคู่ (eren parity)

การแทนคำสั่งในหน่วยความจำ

หน่วยควบคุมของคอมพิวเตอร์ที่อยู่ในซีพียู ทำการอ่านคำสั่งจากหน่วยความจำมาแปลความจำมาแปลความหมายและกระทำตาม คำสั่ง คอมพิวเตอร์พื้นฐานที่สุดเรียกว่า ภาษาเครื่อง (machine langauge) ภาษาเครื่องมีลักษณะเป็นรหัสที่ใช้ได้หลายร้อยคำสั่ง แต่ละคำสั่งจะมีความหมายเฉพาะ เช่น คำสั่งนำข้อมูลที่มีค่าเป็น 3 จากหน่วยความจำตำแหน่งที่ 800 มาบวกกับข้อมูลที่มีค่าเป็น 5 ในตำแหน่งที่ 8001 ผลลัพธ์ที่ได้ให้เก็บไว้ในหน่วยความจำตำแหน่งที่ 8002 เมื่อเขียนคำสั่งเป็นภาษาเครื่องจะมีลักษณะเป็นตัวเลขฐานสองเรียงต่อกันเป็นจำนวนมาก ซึ่งเข้าใจได้ยากจึงมักใช้ตัวอักษรแทนรหัสภาษาเคื่องเหล่านี้ดังตัวอย่าง

LD A, (8000) 00111010,00000000,10000000

LD B,A 01000111

LD B, (8001) 00111010,00000000,10000000

ADD A,B 10000000

LD (8002) 00110010,00000010,10000


           รหัสภาษาเครื่องเมื่อเก็บอยู่ในหน่วยความจำของคอมพิวเตอร์จะมีลักษณะเรียงต่อกันไป สมมุติให้ส่วนของโปแกรมเก็บในหน่วยความจำตำแหน่ง เริ่มจาก 1000และข้อมูลเก็บไว้ที่ตำแหน่งเริ่มจาก 8000 ภาษาสั่งการพื้นฐานที่ใช้รหัสตัวเลขฐานสองนี้เรียกว่า ภาษาเครื่อง คอมพิวเตอร์ที่ใช้ซีพียูต่างตระกูลกันจะมีภาษาเครื่องที่ต่างกัน เช่นเครื่องที่ ใช้ในเครื่องแมกอินทอชมีรหัสคำสั่งต่างกัน
รหัสแทนข้อมูลในคอมพิวเตอร์



รหัสแทนข้อมูลในคอมพิวเตอร์ คอมพิวเตอร์ทำงานด้วยหลักการทางอิเล็กทรอนิกส์ที่แทนสัญญาณทางไฟฟ้าด้วยตัวเลขศูนย์และหนึ่งซี่งเป็นตัวเลขในระบบเลขฐานสอง แต่ละหลักเรียกว่าบิตและเมื่อนำตัวเลขหลายๆ บิตมาเรียงกัน จะใช้สร้างหัสแทนความหมายจำนวน หรือตัวอักษร หรือ สัญลักษณ์ ทั้งภาษาอังกฤษและภาษาไทยได้ และเพื่อให้การสื่อสารแลกเปลี่ยนข้อความระหว่างมนุษย์กับคอมพิวเตอร์เป็นไนในแนวเดียวกัน จึงมีการกำหนดมาตรฐานรหัสตัวเลขในระบบเลขฐานสองสำหรับแทนสัญลักษณ์เหล่านี้ รหัสมาตรฐานที่นิยมใช้กันมากมีสองกลุ่มคือ


รหัสแอสกี

รหัสแอสกีเป็นมาตรฐานที่นิยมใช้กันมากในระบบคอมพิวเตอร์ส่วยใหญ่เป็นคำย่อมาจากAmerican Standard Code for Information Interchangeเป็นรหัส 8บิต แทนสัญลักษณ์ต่าง ๆ ได้256 ตัว เมื่อใช้แทนตัวอักษรภาษาอังกฤษแล้วยังมีเหลืออยู่ สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม หรือสมอได้กำหนดรหัสภาษาไทยเพิ่มลงลงไปเพื่อให้ใช้งานรวมกันได้

รหัสเอ็บซีดิก

รหัสเอ็บซีดิก(EBCDIC) เป็นคำย่อมาจากExtended Binary Coded Decimal Interchange Code พัฒนาและใช้งานโดยบริษัทไอบีเอ็ม เครื่องคอมพิวเตอร์ เมนเฟรมของไอบีเอ็มยังคงใช้รหัสนี้



การแทนข้อมูลในหน่วยความจำ

หน่วยความจำหลักของคอมพิวเตอร์เป็นที่เก็บข้อมูลและคำสั่งในขณะประมวลผลการเก็บข้อมูลในหน่วยความจำเป็นการเก็บรหัสตัวเลข ฐานสอง ข้อมูลมที่ใช้ในการประมวลผลทั้งตัวเลขหรือตัวอักษรจะได้รัการแทนเป็นตัวเลขฐานสอง แล้วเก็บไว้ในหน่วยความจำ เช่น ข้อความว่าBANGKOK เก็บในคอนพิวเตอร์จะแทนเป็นรหัสเรียงกันไปดังนี้

หน่วยความจำของไมโครคอมพิวเตอร์ที่ใช้กันอยู่ในขณะนี้ มีขนาดความกว้าง 8 บิตและเก็บข้อมูลเรียงกันไป โดยมีการกำหนดตำแหน่งซึ่งเรียกว่า เลขที่อยู่ (address) เพื่อให้ข้อมูลที่เก็บมีความถูกต้อง การเขียนหรืออ่านทุกครั้งจึงต้องตรวจสอบความถูกต้องของข้อมูล วิธีที่ง่ายและนิยมใช้กันคือการเพิ่มอีก 1 บิต เพื่อทำให้เลขหนึ่งเป็นจำนวนคู่ เรียกว่าพาริตีคู่ (eren parity)

การแทนคำสั่งในหน่วยความจำ

หน่วยควบคุมของคอมพิวเตอร์ที่อยู่ในซีพียู ทำการอ่านคำสั่งจากหน่วยความจำมาแปลความจำมาแปลความหมายและกระทำตาม คำสั่ง คอมพิวเตอร์พื้นฐานที่สุดเรียกว่า ภาษาเครื่อง (machine langauge) ภาษาเครื่องมีลักษณะเป็นรหัสที่ใช้ได้หลายร้อยคำสั่ง แต่ละคำสั่งจะมีความหมายเฉพาะ เช่น คำสั่งนำข้อมูลที่มีค่าเป็น 3 จากหน่วยความจำตำแหน่งที่ 800 มาบวกกับข้อมูลที่มีค่าเป็น 5 ในตำแหน่งที่ 8001 ผลลัพธ์ที่ได้ให้เก็บไว้ในหน่วยความจำตำแหน่งที่ 8002 เมื่อเขียนคำสั่งเป็นภาษาเครื่องจะมีลักษณะเป็นตัวเลขฐานสองเรียงต่อกันเป็นจำนวนมาก ซึ่งเข้าใจได้ยากจึงมักใช้ตัวอักษรแทนรหัสภาษาเคื่องเหล่านี้ดังตัวอย่าง

LD A, (8000) 00111010,00000000,10000000

LD B,A 01000111

LD B, (8001) 00111010,00000000,10000000

ADD A,B 10000000

LD (8002) 00110010,00000010,10000000

รหัสภาษาเครื่องเมื่อเก็บอยู่ในหน่วยความจำของคอมพิวเตอร์จะมีลักษณะเรียงต่อกันไป สมมุติให้ส่วนของโปแกรมเก็บในหน่วยความจำตำแหน่ง เริ่มจาก 1000และข้อมูลเก็บไว้ที่ตำแหน่งเริ่มจาก 8000 ภาษาสั่งการพื้นฐานที่ใช้รหัสตัวเลขฐานสองนี้เรียกว่า ภาษาเครื่อง คอมพิวเตอร์ที่ใช้ซีพียูต่างตระกูลกันจะมีภาษาเครื่องที่ต่างกัน เช่นเครื่องที่ ใช้ในเครื่องแมกอินทอชมีรหัสคำสั่งต่างกัน


ออกแบบโดย นายมนตรี พรุเตย
ศึกษาอยู่มัธยมศึกษาปีที่ 4 ห้อง 3
อาจารย์ที่ปรึกษา
          นายอุทัย เซ่งอั้น

                                                                                               

สัญญาณ



การส่งสัญญาณแบบอนาลอกและแบบดิจิตอล


(Analog and Digital Transmission)

การส่งสัญญาณแบบอนาลอก

เป็นการส่งส่งสัญญาณแบบอนาลอกโดยไม่สนใจในสิ่งที่บรรจุรวมอยู่ในสัญญาณเลย สัญญาณจะแทนข้อมูลที่เป็นอนาลอก (เช่น สัญญาณเสียง) หรือข้อมูลดิจิตอล (เช่น ข้อมูล ไบนารี) สัญญาณอนาลอกที่ทำการส่งออกไปพลังงานจะอ่อนลงเรื่อย ๆ เมื่อระยะทางเพิ่มขึ้น ดังนั้นในการส่งสัญญาณอนาลอกไประยะไกล ๆ จึงต้องอาศัยเครื่องขยายเสียงสัญญาณหรือแอมปลิไฟเออร์ (Amplifier) เพื่อเพิ่มพลังงานให้กับสัญญาณ แต่ในการใช้เครื่องขยายสัญญาณจะมีการสร้างสัญญาณรบกวนขึ้น (Noise) รวมกับสัญญาณข้อมูลด้วย ยิ่งระยะทางไกลมากเท่าไร ก็ยิ่งมีสัญญาณรบกวนมากขึ้นเท่านั้น การส่งสัญญาณอนาลอกจึงต้องการวงจรกรองสัญญาณ (Filter) เพื่อกรองเอาสัญญาณรบกวนออกอีก

การส่งสัญญาณแบบดิจิตอล

ส่วนในการส่งสัญญาณแบบดิจิตอลจะสนใจทุกสิ่งทุกอย่างที่บรรจุมาในสัญญาณ เมื่อระยะทางเพิ่มมากขึ้น จะทำให้สัญญาณดิจิตอลลดทอนหรือจางหายไปได้ จึงจำเป็นต้องใช้อุปกรณ์ทบทวนสัญญาณหรือรีพีตเตอร์ (Repeater) เพื่อกู้คืน (Recover) รูปแบบของสัญญาณที่มีลักษณะเป็น "1" และ "0" เสียก่อน แล้วจึงส่งสัญญาณที่กู้มาใหม่ออกไปต่อไป

เราสามารถนำเอาอุปกรณ์ทบทวนสัญญาณมาใช้กับการส่งสัญญาณอนาลอกที่มีข้อมูลเป็นแบบดิจิตอลได้ เครื่องทบทวนสัญญาณจะกู้ข้อมูลดิจิตอลจากสัญญาณอนาลอกและสร้างสัญญาณขึ้นมาใหม่ แล้วลบสัญญาณอนาลอกที่ส่งมาด้วยออกไป ดังนั้นจะไม่มีสัญญาณรบกวนที่ติดมากับสัญญาณอนาลอกหลงเหลืออยู่เลย

คำถามคือว่า เราจะเลือกใช้วิธีการส่งสัญญาณข้อมูลเป็นแบบอนะล็อกหรือแบบดิจิตอลดี คำตอบ ก็ขึ้นอยู่กับว่า ระยะทางในการส่งข้อมูลนั้นใกล้หรือไกล ถ้าเป็นระยะทางใกล้ ๆ สามารถเดินสายสัญญาณดิจิตอลได้ ก็ควรจะเลือกใช้การส่งสัญญาณแบบดิจิตอล ส่วนการส่งสัญญาณ ข้อมูลในระยะทางไกล ๆ การสื่อสารของไทยเรายังคงเป็นระบบอนาลอกอยู่ เช่น ระบบโทรศัพท์หรือระบบโทรเลข ดังนั้นจึงควรเลือกใช้วิธีการส่งสัญญาณข้อมูลเป็นแบบอนาลอก

แต่อย่างไรก็ตาม ในอนาคตระบบสื่อสารในบ้านเราก็จะค่อย ๆ เปลี่ยนเป็นระบบดิจิตอล เช่น ระบบเครือข่าย ISDN ซึ่งเมื่อถึงเวลานั้นการส่งสัญญาณข้อมูลต่าง ๆ ก็จะอยู่ในรูปของดิจิตอลทั้งหมด ไม่ว่าจะเป็นสัญญาณเสียงหรือภาพก็ตาม


เทคนิคการสื่อสารข้อมูลดิจิตอล( Digital Data Communication Technique )

เราได้ทำการศึกษาถึงรูปแบบการส่งผ่านสัญญาณข้อมูลทั้งที่เป็นสัญญาณอนาลอกและสัญญาณดิจิตอล ลักษณะของสัญญาณข้อมูล สื่อกลางของการส่งรับข้อมูล การมอดูเลตสัญญาณและอื่น ๆ สำหรับอุปกรณ์คอมพิวเตอร์ 2 เครื่องที่เชื่อมโยงกันด้วยสายสื่อสารเพื่อแลกเปลี่ยนข้อมูลกัน โดยปกติแล้ข้อมูลจะส่งผ่านทีละ 1 บิตต่อครั้งผ่านสายสื่อสาร แต่ละบิตของข้อมูลที่ถูกส่งผ่านไปอย่างต่อเนื่องกัน อาจจะส่งไป

แบบอนุกรม (Serial) หรือ

แบบขนาน ( parallel)

เพื่อให้อัตราการส่งข้อมูลเพิ่มมากขึ้น เวลาของบิตเหล่านี้จะต้องเท่ากันทั้งทางด้านเครื่องส่งและเครื่องรับ เทคนิคที่ทำให้เวลาที่ปลายทางทั้งสองด้านพร้อมกันมี 2 วิธีคือ

วิธีแบบ อะซิงโครนัส (Asynchronization) และ

วิธีแบบ ซิงโครนัส (Synchonization)

เปรียบเทียบประสิทธิภาพระหว่างการส่งข้อมูลแบบอะซิงโครนัสและแบบซิงโครนัส

ลักษณะการส่งข้อมูล

รูปแบบในการส่งข้อมูล (transmission mode)



การส่งข้อมูลในระบบเครือข่าย สามารถทำได้ 2 ลักษณะ คือ การส่งแบบขนาน และการส่งแบบอนุกรม

การส่งแบบขนาน (parallel transmission) คือการส่งข้อมูลพร้อมกันทีละหลาย ๆ บิตในหนึ่งรอบสัญญาณนาฬิกา โดยการส่งจะรวมบิต 0 และ 1 หลาย ๆ บิตเข้าเป็นกลุ่มจำนวน n บิต ผู้ส่งส่งครั้งละ n บิต ผู้รับจะรับครั้งละ n บิตเช่นกัน ซึ่งจะคล้ายกับเวลาที่เราพูดคุยเราจะพูดเป็นคำ ๆ ไม่พูดทีละตัวอักษร

กลไกการส่งข้อมูลแบบขนานใช้หลักการง่าย ๆ เมื่อส่งครั้งละ n บิต ต้องใ้ช้สาย n เส้น แต่ละบิตมีสายของตนเอง ในการส่งแต่ละครั้งทุกเส้นต้องใช้สัญญาณนาฬิกาอันเดียวกัน ทำให้สามารถส่งออกไปยังอุปกรณ์อื่นพร้อมกันได้



รูปแสดงการส่งข้อมูลแบบขนาน โดยให้ n=8 โดยทั่วไปแล้วปลายของสายทั้ง 2 ข้างจะถูกต่อด้วยคอนเน็กเตอร์ด้านละ 1 ตัว ข้อดีของการส่งข้อมูลแบบขนานคือ ความเร็ว เพราะส่งข้อมูลได้ครั้งละ n บิต ดังนั้น ความเร็วจึงเป็น n เท่าของการส่งแบบอนุกรม แต่ข้อเสียที่สำคัญคือ ค่าใช้จ่าย ทั้งนี้เพราะต้องใช้สายจำนวน n เส้น ข้อดีของการส่งข้อมูลแบบอนุกรม คือการใช้ช่องทางการสื่อสารเพียง 1 ช่อง ทำให้ลดค่าใช้จ่ายลง แต่ข้อเสียคือ ความเร็วของการส่งที่ต่ำ ตัวอย่างของการส่งข้อมูลแบบอนุกรม เช่น โมเด็มจะใช้การส่งแบบอนุกรมเนื่องจากในสัญญาณโทรศัพท์มีสายสัญญาณเส้นเดียว และอีกเส้นหนึ่งเป็นสายดิน



ตัวอย่างการส่งข้อมูลแบบขนาน เช่น การส่งข้อมูลภายในระบบบัสของเครื่องคอมพิวเตอร์ หรือการส่งข้อมูลจากเครื่องคอมพิวเตอร์ไปยังเครื่องพิมพ์ (printer) เป็นต้น






การส่งข้อมูลแบบอนุกรม (serial transmission) จะใช้วิธีการส่งทีละ 1 บิตในหนึ่งรอบสัญญาณนาฬิกา ทำให้ดูเหมือนว่าบิตต่าง ๆ เรียงต่อเนื่องกันไป จากอุปกรณ์หนึ่งไปยังอีกอุปกรณ์หนึ่ง ดังรูป




การส่งข้อมูลแบบอนุกรม แบ่งได้เป็น 2 แบบ ดังนี้

1. การส่งข้อมูลแบบอะซิงโครนัส (asynchronous transmission) เป็นการส่งข้อมูลที่ผู้รับและผู้ส่งไม่ต้องใช้สัญญาณนาฬิกาเดียวกัน แต่ข้อมูลที่รับต้องถูกแปลตามรูปแบบที่ได้ตกลงกันไว้ก่อน เนื่องจากไม่ต้องใช้สัญญาณนาฬิกาเดียวกันทำให้ผู้รับไม่สามารถคาดการณ์ได้ว่าเมื่อใดจะมีข้อมูลส่งมาให้ ดังนั้นผู้ส่งจึงจำเป็นต้องแจ้งผู้รับให้ทราบว่าจะมีการส่งข้อมูลมาให้โดยการเพิ่มบิตพิเศษเข้ามาอีกหนึ่งบิต เอาไว้ก่อนหน้าบิตข้อมูล เรียกว่า บิตเริ่ม (start bit) โดยทั่วไปมักใช้บิต 0 และเพื่อให้ผู้รับทราบจุดสิ้นสุดของข้อมูลจึงต้องมีการเพิ่มบิตพิเศษอีกหนึ่งบิตเรียกว่าบิตจบ (stop bit) มักใช้บิต 1 นอกจากนี้แล้วการส่งข้อมูลแต่ละกลุ่มต้องมีช่องว่างระหว่างกลุ่ม โดยช่องว่างระหว่างไบต์อาจใช้วิธีปล่อยให้ช่องสัญญาณว่าง หรืออาจใช้กลุ่มของบิตพิเศษที่มีบิตจบก็ได้ รูปต่อไปนี้แสดงการส่งข้อมูลแบบอะซิงโครนัส ให้บิตเริ่มเป็นบิต 0 บิตจบเป็นบิต 1 และให้ช่องว่างแทนไม่มีการส่งข้อมูล (สายว่าง)

ข้อดีของการส่งข้อมูลแบบอะซิงโครนัส มี 2 ประการ คือ ค่าใช้จ่ายถูกและมีประสิทธิภาพ การส่งข้อมูลแบบนี้จะนำไปใช้ในการสื่อสารที่ต้องการใช้ความเร็วไม่สูงนัก ตัวอย่างเช่น การติดต่อระหว่างเครื่องคอมพิวเตอร์กับเครื่องปลายทาง (terminal) ที่โดยธรรมชาติแล้วเป็นการสื่อสารแบบอะซิงโครนัส เพราะผู้ใช้จะพิมพ์ทีละ

1 ตัวอักษรจากเครื่องปลายทางไปยังเครื่องคอมพิวเตอร์จึงไม่ต้องใช้ความเร็วสูงในการติดต่อสื่อสาร
2. การส่งข้อมูลแบบซิงโครนัส (synchronous transmission) เป็นการส่งบิต 0 และ 1 ที่ต่อเนื่องกันไปโดยไม่มีการแบ่งแยก ผู้รับต้องแยกบิตเหล่านี้ออกมาเป็นไบต์ หรือเป็นตัวอักษรเอง
จากภาพแสดงการส่งข้อมูลแบบซิงโครนัส ผู้ส่งทำการส่งบิตติดต่อกันยาว ๆ ถ้าผู้ส่งต้องการแบ่งช่วงกลุ่มข้อมูลก็ส่งกลุ่มบิต 0 หรือ 1 เพื่อแสดงสถานะว่าง เมื่อแต่บิตมาถึงผู้รับ ผู้ัรับจะนับจำนวนบิตแล้วจับกลุ่มของบิตให้เป็นไบต์ที่มี 8 บิต

การส่งข้อมูลแบบซิงโครนัสมีประสิทธิภาพสูงกว่าแบบอะซิงโครนัสมาก และทำให้มีการใช้ความสามารถของสายสื่อสารได้เกือบทั้งหมด ข้อดีของการส่งข้อมูลแบบซิงโครนัส คือความเร็วในการส่งข้อมูล ทั้งนี้เพราะไม่มีบิตพิเศษหรือช่องว่างที่ไม่ได้ถูกนำไปใช้เมื่อถึงผู้รับ จึงทำให้ความเร็วของการส่งข้อมูลแบบซิงโครนัสเร็วกว่าแบบอะซิงโครนัส ด้วยเหตุนี้จึงมีการนำไปใช้งานที่ต้องการความเร็วสูง เช่น การส่งข้อมูลระหว่างเครื่องคอมพิวเตอร์
รูปแบบในการส่งข้อมูล (transmission mode)




การส่งข้อมูลในระบบเครือข่าย สามารถทำได้ 2 ลักษณะ คือ การส่งแบบขนาน และการส่งแบบอนุกรม

การส่งแบบขนาน (parallel transmission) คือการส่งข้อมูลพร้อมกันทีละหลาย ๆ บิตในหนึ่งรอบสัญญาณนาฬิกา โดยการส่งจะรวมบิต 0 และ 1 หลาย ๆ บิตเข้าเป็นกลุ่มจำนวน n บิต ผู้ส่งส่งครั้งละ n บิต ผู้รับจะรับครั้งละ n บิตเช่นกัน ซึ่งจะคล้ายกับเวลาที่เราพูดคุยเราจะพูดเป็นคำ ๆ ไม่พูดทีละตัวอักษร

กลไกการส่งข้อมูลแบบขนานใช้หลักการง่าย ๆ เมื่อส่งครั้งละ n บิต ต้องใ้ช้สาย n เส้น แต่ละบิตมีสายของตนเอง ในการส่งแต่ละครั้งทุกเส้นต้องใช้สัญญาณนาฬิกาอันเดียวกัน ทำให้สามารถส่งออกไปยังอุปกรณ์อื่นพร้อมกันได้


วิธีการรับส่งข้อมูล

1.สัญญาณ (signal) เนื่องจากอุปกรณ์ที่จะทำการสื่อสารข้อมูลกันเป็นอุปกรณ์ทางไฟฟ้า โดยสัญญาณทางไฟฟ้ามีอยู่สองรูปแบบคือสัญญาณอนาลอก (analog) และสัญญาณแบบดิจิตอล (digital)

- สัญญาณอนาลอก คือสัญญาณทีมีความต่อเนื่องตลอดเวลา โดยสัญญาณนี้จะอยู่ในความต่างศักย์ไฟฟ้าที่เปลี่ยนไปอย่างต่อเนื่อง

- สัญญาณดิจิตอล คือสัญญาณที่มีค่าไม่ต่อเนื่อง ลักษณะของสัญญาณนี้มีอยู่สองระดับถูกแทนเป็นระดับสัญญาณสูง หรือลอจิกสูง กับระดับสัญญาณต่ำ หรือลอจิกต่ำ

2. รหัสแทนข้อมูล (data code)การเก็บข้อมูลของระบบคอมพิวเตอร์นั้นจะถูกเก็บอยู่ในรูปเลขฐานสองไม่ว่าจะเป็นตัวเลข หรือ อักขระข้อมูลต่างๆจะถูกเก็บอยู่ในรูปรหัสเลขฐานสองที่แทนด้วยค่า "0" และค่า "1" ทั้งสิ้น โดยระบบจะนำค่าลอจิก 0 และลอจิก 1 เหล่านี้มาจัดกลุ่มกัน เรียกว่า รหัสแทนข้อมูล รหัสที่นิยมใชกันในปัจจุบัน ได้แก่

- รหัสแอสกี (ascll code)

- รหัสเอ็บซีดิก (ebcdic code)

- รหัสยูนิโค๊ด (unicode)


3. การรับส่งข้อมูล (Data transmission)

การส่งข้อมูล หรือ Data transmission คือการขนส่งข้อมุลจากที่หนึ่งไปยังอีกที่หนึ่งด้วยวิธีการต่างๆ


4.ลักษณะการส่งข้อมูล

สามารถแบ่งการส่งข้อมูลออกตามลักษณะการส่งข้อมูลได้ 2 แบบคือ

1.การส่งข้อมุลแบบอนุกรม เป็นการส่งข้อมูลทีละบิต (1 หรือ 0 ) เช่น ข้อมูล 1 ตัวอักษร มี 8 บิต แต่จะต้องส่ง 9 บิต คือ เพิ่มบิตที่ใช้ตรวจสอบข้อมูล

2.การส่งข้อมูลแบบขนาน เป็นการส่งข้อมูลทีละชุด ผ่านสายตัวนำหลายเส้นในคราวเดียว เช่น การส่งเป็นไบต์ (1 byte=8 bit) จะใช้สาย 8 เส้นส่งข้อมูลพร้อมกันเป็นชุดๆ ต่อเนื่องกันไป จะมีความเร้วในการส่งที่สูงกว่าแบบอนุกรม



5.วิธีการส่งข้อมูล

สามารถแบ่งการส่งข้อมูลออกเป็น 2 วิธี

1.การส่งข้อมูลแบบอซิงโครนัส เป็นการส่งข้อมูลแบบไม่เป็นจังหวะ โดยจะมีบิตเริ่มและบิตจบอยู่ครอบหน้าหลังของข้อมูล เพื่อบอกให้ผู้รับได้รู้ว่าจะมีการเริ่มต้นส่งข้อมูลมาแล้ว และบอกว่าการส่งข้อมูลได้สิ้นสุดลงแล้ว เช่น ข้อมูล1ตัวอักษรมี8บิตแต่ต้องส่ง10บิตโดย2บิตที่เพิ่มขึ้นมาจะเป็นบิตเริ่มต้นและบิตสิ้นสุด เช่น 1 0100 0001 0 เป็นต้น

2.การส่งข้อมูลแบบซิงโครนัส เป็นการส่งข้อมูลแบบเป็นจังหวะ ตามสัญญาณอนาฬิกา โดยสัญญาณนาฬิกาจะเป็นตัวควบคุมจังหวะ การส่งข้อมูลแบบนี้จะไม่มีการใช้บิตเริ่ม บิตจบ เหมือนอซิงโครนัส จะมีก็เฉพาะบิตที่ใช้ตรวจสอบความถูกต้องของข้อมูลเท่านั้น ซึ่งการไม่มีบิตเริ่มและบิตจบ ทำให้ปริมาณข้อมูลมีน้อยลง และสามารถประหยัดเวลาในการรับส่งได้



สรุป


การส่งข้อมูลจากเครื่องคอมพิวเตอร์เครื่องหนึ่งไปยังอีกเครื่องหนึ่ง ข้อมูลที่จะส่งอยู่ในรูปของสัญญาณทางไฟฟ้า ไม่ได้อยู่ในรูปของตัวอักษรที่อ่านได้ โดยการส่งข้อมูลมีทั้งการส่งข้อมูลแบบขนานและการส่งข้อมูลแบบอนุกรม



ระบบซิงโครนัส


( 1 ) การซิงโครโครไนซ์บิตและการซิงโครไนซ์บล็อก

เมื่อสัญญาณข้อมูลถูกส่งผ่านไปตามสายส่งสัญาญาณ เข้าสู่ DTE ปลายทาง สิ่งที่สำคัญก่อนอื่นก็คือ
อุปกรณ์ปลายทางจะต้องสามารถสัญญาณไบนารีหรือบิตซึ่งเป็นสัญญาณพื้นฐานที่สุดนี้ให้ได้อย่างถูกต้องตามจังหวะที่ส่งมา เสียก่อน   การที่อุปกรณ์ปลายทางสามารถรับส่งอุปกรณืไบนารีได้ถูกต้องตามจัหวะนี้เรียกว่า การซิงโครไนซ์บิต    เมื่ออุปกรณ์ปลายทางสามารถรับส่งบิตต่าง ๆ ได้อย่างถูกต้องแล้ว อุปกรณ์ปลายทางก็ยังจำเป็นต้องรู้ว่าสัญญาณที่รับมานั้น สำหรับสหัสแต่ละตัวมีการเริ่มต้นและสิ้นสุดที่ใหนเรียกว่าการซิงโครไนซ์บล็อก    วิธีง่าย ๆ ที่จะทำให้มีการซิงโครไนซ์บิต และการซิงโครไนซ์บล็อกนั้น ทำได้โดยการส่งสัญญาณไทมิ่งไปยังสายอีกเส้นหนึ่งขนานไปกับสายที่ส่งสัญญาณข้อมูล แต่วิธีนี้จะไม่สามารถทำได้กรณีที่ติดต่อกัน เป็นระยะไกล ๆ เพระค่าใช้จ่ายสูงมาก

( 2 ) การส่งแบบซิงโครนัสและการส่งแบบอะซิงโครนัส
วิธีส่งข้อมูลในทางปฏิบัตินั้น เมื่อแบ่งตามลักษณะการซิงโครไนซ์แล้วจะแบ่งได้เป็นการส่งแบบซิงโครนัส และการส่งแบบอะซิงโครนัส ซึ่งทั้งสองแบบนี้จะใช้วิธีแยกสัญญาณไทมิ่งจากสัญญาณข้อมูลที่รับมา    การส่งแบบอะซิงโครนัสซึ่งส่วนใหญ่จะใช้กับระบบที่มีการส่งข้อมูลอัตราต่ำนั้น DTE ทางด้านส่งเมื่อต้องการส่งสัญญาณรหัสออกไป ก็จะจัดสัญญาณนั้นให้อยู่ในรูปอนุกรมแล้วเติมบิตเริ่มต้น ( start bit ) ไว้ที่ด้านหน้า และเติมบิตสิ้ดสุด
           ( stop bit ) ไว้ที่ด้านหลัง แล้วส่งออกไปตามจัหวะของสัญญาณนาริกาทางด้านส่ง ส่วน DTE ทางปลายทางนั้น เมื่อรับบิตเริ่มต้นได้ก็จะทำการรับสัญญาณข้อมูลที่ส่งตามมา โดยใช้จังหวะของสัญญาณนาฬิกาของสถานีตัวเอง และจะรับสัญญาณจนกว่าจะถึงบิตสิ้นสุดแล้วจึงหยุดรับ ดังนั้นวิธีการนี้ DTE ก็จะทำการซิงโครไนซ์บิตและซิงโครไนซ์บล็อกพร้อมกันไป แต่วิธีนี้จะมีปัญหา เกิดขึ้นได้ถ้าสัญญาณรหัสที่ส่งมามีความยาวมากขึ้น เพราะนั้นหมายถึงจังหวะสัญญาณนาฬิการทางด้านส่งและด้านรับจะ
มีโอกาศเบี่ยง เบนกันไปได้มากขึ้น เพราะฉะนั้นจึงมักจะใช้ส่งสัญญาณรหัสเป็นหน่วยสั้น ๆ

รูปแบบการสื่อสารข้อมูล


รูปแบบการสื่อสารข้อมูล (Communication Modes)




การสื่อสารระหว่างเครื่องนั้นจะมีโหมดหลักๆ อยู่ 3 โหมด คือ Unicast, Broadcast และ Multicast



Unicast

        ในโหมดการสื่อสารแบบ Unicast เป็นโหมดการรับส่งข้อมูลจากโหนดหนึ่งไปยังโหนดหนึ่งในลักษณะ 1 ต่อ 1 หรือเรียกว่า One-to-One ในการส่งลักษณะนี้ ตัวค้นหาเส้นทาง (Router) ใช้โพรโทคอล ในการค้นหาเส้นทางระหว่างโหนด เช่น Routing Internet Protocol version 2 (RIP) [7], Open Shortest Path Finding version 2 (OSPF) [9] เป็นต้น เนื่องจากการสื่อสารแบบ Unicast เป็นการส่งข้อมูลระหว่างโหนดแบบง่าย ๆ จึงไม่สามารถรองรับการส่งข้อมูลระหว่างโหนดได้เมื่อมีจำนวนโหนดในการรับส่งเพิ่มมากขึ้น ทำให้เกิดปัญหาการส่งข้อมูลในเครือข่ายมากเกินไป (Network Load)



Broadcast

       ในโหมดการสื่อสารแบบ Broadcast นั้นเป็นการส่งข้อมูลจากโหนดต้นทางหนึ่งโหนดไปยังโหนดปลายทางทุกโหนดที่ติดต่ออยู่ในลักษณะของการแพร่กระจายข้อมูล แบบ 1 ต่อ ทั้งหมด หรือเรียกว่า One-to-All ซึ่งการแพร่ข้อมูลแบบส่งไปยังโหนดทุกโหนดนั้น จะต้องมีการประมวลผลข้อมูลที่โหนดปลายทาง ส่วนโหนดที่ไม่ต้องการรับข้อมูลนั้นก็จะได้รับข้อมูลไปด้วย แต่ต้องทิ้งข้อมูลที่ได้รับมา เป็นการสูญเสียความสามารถในการประมวลผลไป อีกทั้งยังทำให้มีปริมาณข้อมูลส่งอยู่ในเครือข่ายจำนวนมากโดยเปล่าประโยชน์ และสามารถเกิดเป็นปัญหา พายุข้อมูล (Broadcast storm) ได้ การสื่อสารแบบ Broadcast นี้ปัจจุบันมีการใช้งานอยู่เฉพาะใน LAN เท่านั้น เนื่องจากเป็นการยากในการหาเส้นทางเมื่อส่งออก WAN (Wide Area Network) ดังนั้นจึงใช้เฉพาะใน LAN ซึ่งจัดการได้ดีง่ายกว่าบน WAN



Multicast

         ในโหมดการสื่อสารข้อมูลแบบ Multicast เป็นการส่งข้อมูลจากโหนดต้นทางหนึ่งไปยังกลุ่มของโหนดปลายทางเฉพาะกลุ่มที่มีการกำหนดแบบ 1 ต่อกลุ่มเฉพาะ หรือ One-to-N ซึ่ง N ในที่นี้อยู่ตั้งแต่ 0 ถึง ทั้งหมด การส่งข้อมูลจะส่งไปยังเฉพาะกลุ่มที่ต้องการรับข้อมูลเท่านั้น การส่งข้อมูลแบบนี้จะแตกต่างจาก Unicast และ Broadcast มาก คือ ข้อมูลจะถูกส่งจากต้นทางเพียงแพ็กเก็ต (Packet) เดียวและจะถูกส่งต่อโดยตัวค้นหาเส้นทาง (Router) จนถึงกลุ่มเครือข่ายปลายทาง และจะส่งแพ็กเก็ต (Packet) ข้อมูลไปยังเครื่องในกลุ่มเฉพาะ (Multicast Group) ที่กำหนด โดยจะทำการคัดลอกแพ็กเก็ตข้อมูลแล้วส่งให้แก่โหนดปลายทางทุกโหนดที่ต้องการ



*Source : Puangpronpitag S. Design and Performance Evaluation of Multicast Congestion Control for the Internet [Ph.D. Thesis in Computer Network]. LEEDS: School of Computing. University of Leeds; 2003

วันจันทร์ที่ 19 ตุลาคม พ.ศ. 2552

การสื่อสารข้อมูล (Data Communication)

การสื่อสารข้อมูล (Data Communications) หมายถึง กระบวนการถ่ายโอนหรือแลกเปลี่ยนข้อมูลกันระหว่างผู้ส่งและผู้รับ โดยผ่านช่องทางสื่อสาร เช่น อุปกรณ์อิเล็กทรอนิกส์ หรือคอมพิวเตอร์เป็นตัวกลางในการส่งข้อมูล เพื่อให้ผู้ส่งและผู้รับเกิดความเข้าใจซึ่งกันและกัน
วิธีการส่งข้อมูล จะแปลงข้อมูลเป็นสัญญาณ หรือรหัสเสียก่อนแล้วจึงส่งไปยังผู้รับ และเมื่อถึงปลายทางหรือผู้รับก็จะต้องมีการแปลงสัญญาณนั้น กลับมาให้อยู่ในรูปที่มนุษย์ สามารถที่จะเข้าใจได้ ในระหว่างการส่งอาจจะมีอุปสรรค์ที่เกิดขึ้นก็คือ สิ่งรบกวน (Noise) จากภายนอกทำให้ข้อมูลบางส่วนเสียหาย หรือผิดเพี้ยนไปได้ซึ่งระยะทางก็มีส่วนเกี่ยวข้อง ด้วยเพราะถ้าระยะทางในการส่งยิ่งมากก็อาจจะทำให้เกิดสิ่งรบกวนได้มากเช่นกัน จึงต้องมีหาวิธีลดสิ่งรบกวน เหล่านี้ โดยการพัฒนาตัวกลางในการสื่อสารที่จะทำให้เกิดการรบกวนน้อยที่สุด
องค์ประกอบขั้นพื้นฐานของระบบ
องค์ประกอบขั้นพื้นฐานของระบบสื่อสารโทรคมนาคม สามารถจำแนกออกเป็นส่วนประกอบได้ดังต่อไปนี้ 1. ผู้ส่งข่าวสารหรือแหล่งกำเนิดข่าวสาร (source) อาจจะเป็นสัญญาณต่าง ๆ เช่น สัญญาณภาพ ข้อมูล และเสียงเป็นต้น ในการติดต่อสื่อสารสมัยก่อนอาจจะใช้แสงไฟ ควันไฟ หรือท่าทางต่าง ๆ ก็นับว่าเป็นแหล่งกำเนิดข่าวสาร จัดอยู่ในหมวดหมู่นี้เช่นกัน 2. ผู้รับข่าวสารหรือจุดหมายปลายทางของข่าวสาร (sink) ซึ่งจะรับรู้จากสิ่งที่ผู้ส่งข่าวสาร หรือแหล่งกำเนิดข่าวสารส่งผ่านมาให้ตราบใด ที่การติดต่อสื่อสารบรรลุวัตถุประสงค์ ผู้รับสารหรือจุดหมายปลายทางของข่าวสารก็จะได้รับข่าวสารนั้น ๆ ถ้าผู้รับสารหรือ จุดหมายปลายทางไม่ได้รับข่าวสาร ก็แสดงว่าการสื่อสารนั้นไม่ประสบความสำเร็จ กล่าวคือไม่มีการสื่อสารเกิดขึ้นนั่นเอง
3. ช่องสัญญาณ (channel) ในที่นี้อาจจะหมายถึงสื่อกลางหรือตัวกลางที่ข่าวสารเดินทางผ่าน อาจจะเป็นอากาศ สายนำสัญญาณต่าง ๆ หรือแม้กระทั่งของเหลว เช่น น้ำ น้ำมัน เป็นต้น เปรียบเสมือนเป็นสะพานที่จะให้ข่าวสารข้ามจากฝั่งหนึ่งไปยังอีกฝั่งหนึ่ง 4. การเข้ารหัส (encoding) เป็นการช่วยให้ผู้ส่งข่าวสารและผู้รับข่าวสารมีความเข้าใจตรงกันในการสื่อความหมาย จึงมีความจำเป็นต้องแปลงความหมายนี้ การเข้ารหัสจึงหมายถึงการแปลงข่าวสารให้อยู่ในรูปพลังงาน ที่พร้อมจะส่งไปในสื่อกลาง ทางผู้ส่งมีความเข้าใจต้องตรงกันระหว่าง ผู้ส่งและผู้รับ หรือมีรหัสเดียวกัน การสื่อสารจึงเกิดขึ้นได้ 5. การถอดรหัส (decoding) หมายถึงการที่ผู้รับข่าวสารแปลงพลังงานจากสื่อกลางให้กลับไปอยู่ในรูปข่าวสารที่ส่งมาจากผู้ส่งข่าวสาร โดยมีความเข้าในหรือรหัสตรงกัน 6. สัญญาณรบกวน (noise) เป็นสิ่งที่มีอยู่ในธรรมชาติ มักจะลดทอนหรือรบกวนระบบ อาจจะเกิดขึ้นได้ทั้งทางด้านผู้ส่งข่าวสาร ผู้รับข่าวสาร และช่องสัญญาณ แต่ในการศึกษาขั้นพื้นฐานมักจะสมมติให้ทางด้านผู้ส่งข่าวสารและผู้รับข่าวสารไม่มีความผิดพลาด ตำแหน่งที่ใช้วิเคราะห์ มักจะเป็นที่ตัวกลางหรือช่องสัญญาณ เมื่อไรที่รวมสัญญาณรบกวนด้านผู้ส่งข่าวสารและด้านผู้รับข่าวสาร ในทางปฎิบัติมักจะใช้ วงจรกรอง (filter) กรองสัญญาณแต่ต้นทาง เพื่อให้การสื่อสารมีคุณภาพดียิ่งขึ้นแล้วค่อยดำเนินการ เช่น การเข้ารหัสแหล่งข้อมูล เป็นต้น
ข่ายการสื่อสารข้อมูล หมายถึง การรับส่งข้อมูลหรือสารสนเทศจากที่หนึ่งไปยังอีกที่หนึ่ง โดยอาศัยระบบการส่งข้อมูล ทางคลื่นไฟฟ้าหรือแสง อุปกรณ์ที่ประกอบเป็นระบบการสื่อสารข้อมูลโดยทั่วไปเรียกว่า ข่ายการสื่อสารข้อมูล (Data Communication Networks)
องค์ประกอบพื้นฐาน
หน่วยส่งข้อมูล (Sending Unit)
ช่องทางการส่งข้อมูล (Transmisstion Channel)
หน่วยรับข้อมูล (Receiving Unit)
วัตถุประสงค์หลักของการนำการสื่อการข้อมูลมาประยุกต์ใช้ในองค์การประกอบด้วย
เพื่อรับข้อมูลและสารสนเทศจากแหล่งกำเนิดข้อมูล
เพื่อส่งและกระจายข้อมูลได้อย่างรวดเร็ว
เพื่อลดเวลาการทำงาน
เพื่อการประหยัดค่าใช้จ่ายในการส่งข่าวสาร
เพื่อช่วยขยายการดำเนินการองค์การ
เพื่อช่วยปรับปรุงการบริหารขององค์การ
ประโยชน์ของการสื่อสารข้อมูล 1) การจัดเก็บข้อมูลได้ง่ายและสื่อสารได้รวดเร็ว การจัดเก็บซึ่อยู่ในรูปของสัญญาณอิเล็กทรอนิกส์ สามารถจัดเก็บไว้ในแผ่นบันทึกที่มีความหนาแน่นสูงแผ่นบันทึกแผ่นหนึ่งสามารถบันทึกข้อมูลได้มากกกว่า 1 ล้านตัวอักษร สำหรับการสื่อสารข้อมูลนั้น ถ้าข้อมูลผ่านสายโทรศัพท์ได้ในอัตรา 120 ตัวอักษรต่อวินาทีแล้ว จะส่งข้อมูล 200 หน้าได้ในเวลา 40 นาที โดยไม่ต้องเสียเวลานั่งป้อนข้อมูลเหล่านั้นซ้ำใหม่อีก 2) ความถูกต้องของข้อมูล โดยปกติวิธีส่งข้อมูลด้วยสัญญาณอิเล็กทรอนิกส์ จากจุดหนึ่งไปยังอีกจุดหนึ่งด้วยระบบดิจิตอล วิธีการส่งข้อมูลนั้นมีการตรวจสอบสภาพของข้อมูล หากข้อมูลผิดพลาดก็จะมีการรับรู้ และพยายามหาวิธีแก้ไขให้ข้อมูลที่ได้รับมีความถูกต้อง โดยอาจให้ทำการส่งใหม่ หรือกรณีที่ผิดพลาดไม่มากนัก ฝ่ายผู้รับอาจใช้โปรแกรมของตนแก้ไขข้อมูลให้ถูกต้องได้ 3) ความเร็วของการทำงาน โดยปกติสัญญาณทางไฟฟ้าจะเดินทางด้วยความเร็วเท่าแสง ทำให้การใช้คอมพิวเตอร์ส่งข้อมูลจากซีกโลกหนึ่ง ไปยังอีกซีกโลกหนึ่ง หรือค้นหาข้อมูลจากฐานข้อมูลขนาดใหญ่ สามารถทำได้รวดเร็ว ความรวดเร็วของระบบทำให้ผู้ใช้สะดวกสบายยิ่งขึ้น เช่น บริษัทสายการบินทุกแห่งสามารถทราบข้อมูลของทุกเที่ยวบินได้อย่างรวดเร็ว ทำให้การจองที่นั่งของสายการบินสามารถทำได้ทันที 4) ต้นทุนประหยัด การเชื่อมต่อคอมพิวเตอร์เข้าหากันเป็นเครือข่าย เพื่อส่งหรือสำเนาข้อมูล ทำให้ราคาต้นทุนของการใช้ข้อมูลประหยัดขึ้น เมื่อเทียบกับการจัดส่งแบบวิธีอื่น สามารถส่งข้อมูลให้กันและกันผ่านทางสายโทรศัพท์ได้

กลับเมนูหลัก

การสื่อสารข้อมูล